\(\int \frac {(d^2-e^2 x^2)^p}{x^3 (d+e x)^4} \, dx\) [303]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [F]
   Fricas [F]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 25, antiderivative size = 211 \[ \int \frac {\left (d^2-e^2 x^2\right )^p}{x^3 (d+e x)^4} \, dx=\frac {e^2 (11-p) \left (d^2-e^2 x^2\right )^{-3+p}}{2 (3-p)}-\frac {d^2 \left (d^2-e^2 x^2\right )^{-3+p}}{2 x^2}+\frac {4 d e \left (d^2-e^2 x^2\right )^{-3+p}}{x}-\frac {8 e^3 (4-p) x \left (d^2-e^2 x^2\right )^p \left (1-\frac {e^2 x^2}{d^2}\right )^{-p} \operatorname {Hypergeometric2F1}\left (\frac {1}{2},4-p,\frac {3}{2},\frac {e^2 x^2}{d^2}\right )}{d^7}+\frac {e^2 (10-p) \left (d^2-e^2 x^2\right )^{-2+p} \operatorname {Hypergeometric2F1}\left (1,-2+p,-1+p,1-\frac {e^2 x^2}{d^2}\right )}{2 d^2 (2-p)} \]

[Out]

1/2*e^2*(11-p)*(-e^2*x^2+d^2)^(-3+p)/(3-p)-1/2*d^2*(-e^2*x^2+d^2)^(-3+p)/x^2+4*d*e*(-e^2*x^2+d^2)^(-3+p)/x-8*e
^3*(4-p)*x*(-e^2*x^2+d^2)^p*hypergeom([1/2, 4-p],[3/2],e^2*x^2/d^2)/d^7/((1-e^2*x^2/d^2)^p)+1/2*e^2*(10-p)*(-e
^2*x^2+d^2)^(-2+p)*hypergeom([1, -2+p],[-1+p],1-e^2*x^2/d^2)/d^2/(2-p)

Rubi [A] (verified)

Time = 0.25 (sec) , antiderivative size = 211, normalized size of antiderivative = 1.00, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.360, Rules used = {866, 1821, 1666, 457, 80, 67, 12, 252, 251} \[ \int \frac {\left (d^2-e^2 x^2\right )^p}{x^3 (d+e x)^4} \, dx=\frac {e^2 (10-p) \left (d^2-e^2 x^2\right )^{p-2} \operatorname {Hypergeometric2F1}\left (1,p-2,p-1,1-\frac {e^2 x^2}{d^2}\right )}{2 d^2 (2-p)}+\frac {e^2 (11-p) \left (d^2-e^2 x^2\right )^{p-3}}{2 (3-p)}+\frac {4 d e \left (d^2-e^2 x^2\right )^{p-3}}{x}-\frac {d^2 \left (d^2-e^2 x^2\right )^{p-3}}{2 x^2}-\frac {8 e^3 (4-p) x \left (1-\frac {e^2 x^2}{d^2}\right )^{-p} \left (d^2-e^2 x^2\right )^p \operatorname {Hypergeometric2F1}\left (\frac {1}{2},4-p,\frac {3}{2},\frac {e^2 x^2}{d^2}\right )}{d^7} \]

[In]

Int[(d^2 - e^2*x^2)^p/(x^3*(d + e*x)^4),x]

[Out]

(e^2*(11 - p)*(d^2 - e^2*x^2)^(-3 + p))/(2*(3 - p)) - (d^2*(d^2 - e^2*x^2)^(-3 + p))/(2*x^2) + (4*d*e*(d^2 - e
^2*x^2)^(-3 + p))/x - (8*e^3*(4 - p)*x*(d^2 - e^2*x^2)^p*Hypergeometric2F1[1/2, 4 - p, 3/2, (e^2*x^2)/d^2])/(d
^7*(1 - (e^2*x^2)/d^2)^p) + (e^2*(10 - p)*(d^2 - e^2*x^2)^(-2 + p)*Hypergeometric2F1[1, -2 + p, -1 + p, 1 - (e
^2*x^2)/d^2])/(2*d^2*(2 - p))

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 67

Int[((b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((c + d*x)^(n + 1)/(d*(n + 1)*(-d/(b*c))^m))
*Hypergeometric2F1[-m, n + 1, n + 2, 1 + d*(x/c)], x] /; FreeQ[{b, c, d, m, n}, x] &&  !IntegerQ[n] && (Intege
rQ[m] || GtQ[-d/(b*c), 0])

Rule 80

Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(-(b*e - a*f
))*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/(f*(p + 1)*(c*f - d*e))), x] - Dist[(a*d*f*(n + p + 2) - b*(d*e*(n + 1
) + c*f*(p + 1)))/(f*(p + 1)*(c*f - d*e)), Int[(c + d*x)^n*(e + f*x)^Simplify[p + 1], x], x] /; FreeQ[{a, b, c
, d, e, f, n, p}, x] &&  !RationalQ[p] && SumSimplerQ[p, 1]

Rule 251

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[a^p*x*Hypergeometric2F1[-p, 1/n, 1/n + 1, (-b)*(x^n/a)],
x] /; FreeQ[{a, b, n, p}, x] &&  !IGtQ[p, 0] &&  !IntegerQ[1/n] &&  !ILtQ[Simplify[1/n + p], 0] && (IntegerQ[p
] || GtQ[a, 0])

Rule 252

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[a^IntPart[p]*((a + b*x^n)^FracPart[p]/(1 + b*(x^n/a))^Fra
cPart[p]), Int[(1 + b*(x^n/a))^p, x], x] /; FreeQ[{a, b, n, p}, x] &&  !IGtQ[p, 0] &&  !IntegerQ[1/n] &&  !ILt
Q[Simplify[1/n + p], 0] &&  !(IntegerQ[p] || GtQ[a, 0])

Rule 457

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &&
 NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rule 866

Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Dist[d^(2*m)/a
^m, Int[(f + g*x)^n*((a + c*x^2)^(m + p)/(d - e*x)^m), x], x] /; FreeQ[{a, c, d, e, f, g, n, p}, x] && NeQ[e*f
 - d*g, 0] && EqQ[c*d^2 + a*e^2, 0] &&  !IntegerQ[p] && EqQ[f, 0] && ILtQ[m, -1] &&  !(IGtQ[n, 0] && ILtQ[m +
n, 0] &&  !GtQ[p, 1])

Rule 1666

Int[(Pq_)*(x_)^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Module[{q = Expon[Pq, x], k}, Int[x^m*Sum[Coeff[
Pq, x, 2*k]*x^(2*k), {k, 0, q/2}]*(a + b*x^2)^p, x] + Int[x^(m + 1)*Sum[Coeff[Pq, x, 2*k + 1]*x^(2*k), {k, 0,
(q - 1)/2}]*(a + b*x^2)^p, x]] /; FreeQ[{a, b, p}, x] && PolyQ[Pq, x] &&  !PolyQ[Pq, x^2] && IGtQ[m, -2] &&  !
IntegerQ[2*p]

Rule 1821

Int[(Pq_)*((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{Q = PolynomialQuotient[Pq, c*x, x],
 R = PolynomialRemainder[Pq, c*x, x]}, Simp[R*(c*x)^(m + 1)*((a + b*x^2)^(p + 1)/(a*c*(m + 1))), x] + Dist[1/(
a*c*(m + 1)), Int[(c*x)^(m + 1)*(a + b*x^2)^p*ExpandToSum[a*c*(m + 1)*Q - b*R*(m + 2*p + 3)*x, x], x], x]] /;
FreeQ[{a, b, c, p}, x] && PolyQ[Pq, x] && LtQ[m, -1] && (IntegerQ[2*p] || NeQ[Expon[Pq, x], 1])

Rubi steps \begin{align*} \text {integral}& = \int \frac {(d-e x)^4 \left (d^2-e^2 x^2\right )^{-4+p}}{x^3} \, dx \\ & = -\frac {d^2 \left (d^2-e^2 x^2\right )^{-3+p}}{2 x^2}-\frac {\int \frac {\left (d^2-e^2 x^2\right )^{-4+p} \left (8 d^5 e-2 d^4 e^2 (10-p) x+8 d^3 e^3 x^2-2 d^2 e^4 x^3\right )}{x^2} \, dx}{2 d^2} \\ & = -\frac {d^2 \left (d^2-e^2 x^2\right )^{-3+p}}{2 x^2}+\frac {4 d e \left (d^2-e^2 x^2\right )^{-3+p}}{x}+\frac {\int \frac {\left (d^2-e^2 x^2\right )^{-4+p} \left (2 d^6 e^2 (10-p)-16 d^5 e^3 (4-p) x+2 d^4 e^4 x^2\right )}{x} \, dx}{2 d^4} \\ & = -\frac {d^2 \left (d^2-e^2 x^2\right )^{-3+p}}{2 x^2}+\frac {4 d e \left (d^2-e^2 x^2\right )^{-3+p}}{x}+\frac {\int -16 d^5 e^3 (4-p) \left (d^2-e^2 x^2\right )^{-4+p} \, dx}{2 d^4}+\frac {\int \frac {\left (d^2-e^2 x^2\right )^{-4+p} \left (2 d^6 e^2 (10-p)+2 d^4 e^4 x^2\right )}{x} \, dx}{2 d^4} \\ & = -\frac {d^2 \left (d^2-e^2 x^2\right )^{-3+p}}{2 x^2}+\frac {4 d e \left (d^2-e^2 x^2\right )^{-3+p}}{x}+\frac {\text {Subst}\left (\int \frac {\left (d^2-e^2 x\right )^{-4+p} \left (2 d^6 e^2 (10-p)+2 d^4 e^4 x\right )}{x} \, dx,x,x^2\right )}{4 d^4}-\left (8 d e^3 (4-p)\right ) \int \left (d^2-e^2 x^2\right )^{-4+p} \, dx \\ & = \frac {e^2 (11-p) \left (d^2-e^2 x^2\right )^{-3+p}}{2 (3-p)}-\frac {d^2 \left (d^2-e^2 x^2\right )^{-3+p}}{2 x^2}+\frac {4 d e \left (d^2-e^2 x^2\right )^{-3+p}}{x}+\frac {1}{2} \left (e^2 (10-p)\right ) \text {Subst}\left (\int \frac {\left (d^2-e^2 x\right )^{-3+p}}{x} \, dx,x,x^2\right )-\frac {\left (8 e^3 (4-p) \left (d^2-e^2 x^2\right )^p \left (1-\frac {e^2 x^2}{d^2}\right )^{-p}\right ) \int \left (1-\frac {e^2 x^2}{d^2}\right )^{-4+p} \, dx}{d^7} \\ & = \frac {e^2 (11-p) \left (d^2-e^2 x^2\right )^{-3+p}}{2 (3-p)}-\frac {d^2 \left (d^2-e^2 x^2\right )^{-3+p}}{2 x^2}+\frac {4 d e \left (d^2-e^2 x^2\right )^{-3+p}}{x}-\frac {8 e^3 (4-p) x \left (d^2-e^2 x^2\right )^p \left (1-\frac {e^2 x^2}{d^2}\right )^{-p} \, _2F_1\left (\frac {1}{2},4-p;\frac {3}{2};\frac {e^2 x^2}{d^2}\right )}{d^7}+\frac {e^2 (10-p) \left (d^2-e^2 x^2\right )^{-2+p} \, _2F_1\left (1,-2+p;-1+p;1-\frac {e^2 x^2}{d^2}\right )}{2 d^2 (2-p)} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.79 (sec) , antiderivative size = 399, normalized size of antiderivative = 1.89 \[ \int \frac {\left (d^2-e^2 x^2\right )^p}{x^3 (d+e x)^4} \, dx=\frac {\left (d^2-e^2 x^2\right )^p \left (\frac {64 d^2 e \left (1-\frac {e^2 x^2}{d^2}\right )^{-p} \operatorname {Hypergeometric2F1}\left (-\frac {1}{2},-p,\frac {1}{2},\frac {e^2 x^2}{d^2}\right )}{x}+\frac {8 d^3 \left (1-\frac {d^2}{e^2 x^2}\right )^{-p} \operatorname {Hypergeometric2F1}\left (1-p,-p,2-p,\frac {d^2}{e^2 x^2}\right )}{(-1+p) x^2}+\frac {5\ 2^{4+p} e^2 (d-e x) \left (1+\frac {e x}{d}\right )^{-p} \operatorname {Hypergeometric2F1}\left (1-p,1+p,2+p,\frac {d-e x}{2 d}\right )}{1+p}+\frac {3\ 2^{3+p} e^2 (d-e x) \left (1+\frac {e x}{d}\right )^{-p} \operatorname {Hypergeometric2F1}\left (2-p,1+p,2+p,\frac {d-e x}{2 d}\right )}{1+p}+\frac {3\ 2^{1+p} e^2 (d-e x) \left (1+\frac {e x}{d}\right )^{-p} \operatorname {Hypergeometric2F1}\left (3-p,1+p,2+p,\frac {d-e x}{2 d}\right )}{1+p}+\frac {2^p e^2 (d-e x) \left (1+\frac {e x}{d}\right )^{-p} \operatorname {Hypergeometric2F1}\left (4-p,1+p,2+p,\frac {d-e x}{2 d}\right )}{1+p}+\frac {80 d e^2 \left (1-\frac {d^2}{e^2 x^2}\right )^{-p} \operatorname {Hypergeometric2F1}\left (-p,-p,1-p,\frac {d^2}{e^2 x^2}\right )}{p}\right )}{16 d^7} \]

[In]

Integrate[(d^2 - e^2*x^2)^p/(x^3*(d + e*x)^4),x]

[Out]

((d^2 - e^2*x^2)^p*((64*d^2*e*Hypergeometric2F1[-1/2, -p, 1/2, (e^2*x^2)/d^2])/(x*(1 - (e^2*x^2)/d^2)^p) + (8*
d^3*Hypergeometric2F1[1 - p, -p, 2 - p, d^2/(e^2*x^2)])/((-1 + p)*(1 - d^2/(e^2*x^2))^p*x^2) + (5*2^(4 + p)*e^
2*(d - e*x)*Hypergeometric2F1[1 - p, 1 + p, 2 + p, (d - e*x)/(2*d)])/((1 + p)*(1 + (e*x)/d)^p) + (3*2^(3 + p)*
e^2*(d - e*x)*Hypergeometric2F1[2 - p, 1 + p, 2 + p, (d - e*x)/(2*d)])/((1 + p)*(1 + (e*x)/d)^p) + (3*2^(1 + p
)*e^2*(d - e*x)*Hypergeometric2F1[3 - p, 1 + p, 2 + p, (d - e*x)/(2*d)])/((1 + p)*(1 + (e*x)/d)^p) + (2^p*e^2*
(d - e*x)*Hypergeometric2F1[4 - p, 1 + p, 2 + p, (d - e*x)/(2*d)])/((1 + p)*(1 + (e*x)/d)^p) + (80*d*e^2*Hyper
geometric2F1[-p, -p, 1 - p, d^2/(e^2*x^2)])/(p*(1 - d^2/(e^2*x^2))^p)))/(16*d^7)

Maple [F]

\[\int \frac {\left (-e^{2} x^{2}+d^{2}\right )^{p}}{x^{3} \left (e x +d \right )^{4}}d x\]

[In]

int((-e^2*x^2+d^2)^p/x^3/(e*x+d)^4,x)

[Out]

int((-e^2*x^2+d^2)^p/x^3/(e*x+d)^4,x)

Fricas [F]

\[ \int \frac {\left (d^2-e^2 x^2\right )^p}{x^3 (d+e x)^4} \, dx=\int { \frac {{\left (-e^{2} x^{2} + d^{2}\right )}^{p}}{{\left (e x + d\right )}^{4} x^{3}} \,d x } \]

[In]

integrate((-e^2*x^2+d^2)^p/x^3/(e*x+d)^4,x, algorithm="fricas")

[Out]

integral((-e^2*x^2 + d^2)^p/(e^4*x^7 + 4*d*e^3*x^6 + 6*d^2*e^2*x^5 + 4*d^3*e*x^4 + d^4*x^3), x)

Sympy [F]

\[ \int \frac {\left (d^2-e^2 x^2\right )^p}{x^3 (d+e x)^4} \, dx=\int \frac {\left (- \left (- d + e x\right ) \left (d + e x\right )\right )^{p}}{x^{3} \left (d + e x\right )^{4}}\, dx \]

[In]

integrate((-e**2*x**2+d**2)**p/x**3/(e*x+d)**4,x)

[Out]

Integral((-(-d + e*x)*(d + e*x))**p/(x**3*(d + e*x)**4), x)

Maxima [F]

\[ \int \frac {\left (d^2-e^2 x^2\right )^p}{x^3 (d+e x)^4} \, dx=\int { \frac {{\left (-e^{2} x^{2} + d^{2}\right )}^{p}}{{\left (e x + d\right )}^{4} x^{3}} \,d x } \]

[In]

integrate((-e^2*x^2+d^2)^p/x^3/(e*x+d)^4,x, algorithm="maxima")

[Out]

integrate((-e^2*x^2 + d^2)^p/((e*x + d)^4*x^3), x)

Giac [F]

\[ \int \frac {\left (d^2-e^2 x^2\right )^p}{x^3 (d+e x)^4} \, dx=\int { \frac {{\left (-e^{2} x^{2} + d^{2}\right )}^{p}}{{\left (e x + d\right )}^{4} x^{3}} \,d x } \]

[In]

integrate((-e^2*x^2+d^2)^p/x^3/(e*x+d)^4,x, algorithm="giac")

[Out]

integrate((-e^2*x^2 + d^2)^p/((e*x + d)^4*x^3), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\left (d^2-e^2 x^2\right )^p}{x^3 (d+e x)^4} \, dx=\int \frac {{\left (d^2-e^2\,x^2\right )}^p}{x^3\,{\left (d+e\,x\right )}^4} \,d x \]

[In]

int((d^2 - e^2*x^2)^p/(x^3*(d + e*x)^4),x)

[Out]

int((d^2 - e^2*x^2)^p/(x^3*(d + e*x)^4), x)